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ieiectronunti~c pulse. Paralleling the wel1-knoum description of lumped circuit
iIn terms of thr poles and zeros, a coapact representation of the loop antenna
I n tens of its poles and zeros is derived. The resulting time d&eiv descri;-

tino telo response Is sioply a sum of term lnvclving the resicuvs, the
exctatonandtheexpoetilaly damped sinusoids whose ccaplex fmeuencles are

~the rmencies at which *mdiaticn from a scatterer or antenna can take olace
witoutinbplie d excitation. On'e Obfect1ve of this research is tcA investigfle

domain waveftors by wtifovwly leading a loop antenna. in arIctao wse
to, choos.. the loading st as to realize scr desired pole-zero configureation CM
the strwtctre. 4"-It is show that the eff~ect o-' the loading can be interpreted as
introduciino a feedback, locw irto a block diagrern rworesvnantfiw of the irvedanct

Itrmnsfer ftrcti~on. This observation perrits one to 'zse tV* rot-lccius teciiii$.t
well-know in the area of fee&ark rentrol theory to predict. certain features of
Ithe pole trajeceories as the !oadinC * wiutsyvred utenoe h
Ipole positions for a given i"v, ine-s loAdirng Con be fewid with t4he ad o• cntCur
Jplots of the wwgiitude arnd phase of the irps-dance transFer ircticr. VextiniflgIh "'~e of the zhn-let'a c!!1iaes for Lh6* an-alyisll if loading together Wltnt t.e
singulirHty eximnsion reprtsentattic, we extend to electrcrapietic probleas a j
capabilitty to possibly synthesize the dacired rspns w hen thtnpto
t0o w. ieanfo Is given.
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3' CHAPTER

IN TRODUCTIO$1

Although there are *any eWo tromagnettc probVn

which ran b~e treatad satisfactorily by meant of a static

or steaty-state approxisation, there are an increasingq

atumber of problems in which the transiert behavion is of

oeraswutvt importarce. These problems are. usually diffi-

cu'it because they pose the probleme of solvltg the field

equations as functions of both time and space.

A fow electromaonetlc scattering and radiation prob-'

Ilams can be aanlyticafly solved d~rectly in the tine

domaio. However, for most problems a direct time domainI'

-' schition qenorally must be obtained by numerical methods.

These wethods are, at best, t-edious to apply and are

of'ten plagued by stability problems.

A commonly more fruitful approach to obtaining

(A Itransient field solutions is uc first trauisfons the tluaf

out of the field equations. Most enigineers are funoiliar

with this transfoarm technique. In this method the tines

Hdependence is trangforued out of the field equations by

either a Fourier or Laplace transforwa. The transformed
21k

11 equations are fu,,ctions of space, with frequency appear-

ing moerely as a pirauseter of tne problems. The problem

'(A

A' I



IS then solved in the frequency domain either analyti-

cally' or numerically using, for example, a moment methodt

tech~nique. Once this steady-state solution of a problem

haz been obtained, it is then relatively simple to obtaidi

the sore general solution represeatite the response of

the object to an imprtssed field varying arbitrarily with
time. This is done by Fourier inversion of the spectrum

of the solution qusatity weighted by the spectrum of the

excitation.

For solutions obtained either by time narsonic anal.

pysis coupled with Fourier inversiew or by Adirect time

domain techniques, ai change in the spatial or teoporol

.* behavior of the excitation requires that considerable
effort bo spent ira recalculating the responst o* the
structure. 0ne is Nard to ask whether or not the louj
established desceiptton of lumped circut. antrso

their poles and zeros vmight also be used to provide a

moe ompact representation ofelectroaagnetic field

proble.-s. to the cast of electrical itetworksi. spe-cifying
the finltt number of pole dad Zero freque"Cies of' a aet-

work quantity (meac.transfer fnto.etc.) cs
PVetely Weeraboos the Qualitity at all frequefocies.

Furtfieroarev the tine douai" rtsoc~ase of 4 linear cirtcuit

{..,~.excited by 'an arbitrary wavrefowv smy be determiin*ed f rooe



knowledge of the location of these jole singularities of

Oa response function in the complex frequency plane. as

well as their corresponding residues. The resplting time

dowain description of the circuit response is s4mply a

sum of terms involving the residues, the excitation, and

the expontentially damped sinuscids whose complex fre-

quencies are the pole frequencies.

The techniques of circuit theory are b~ased or the J

assumptions that path lengths in the circuit are neglible

and that all electric and magnetic fields 3re essentialls~

confined to the circuit elements. Field theory* oý4 tvie

other hand, must deal with fluxes in two or three soace

dimensioios. Given that circuit theory actually has iv-s

27 toundations in field theory, one amight suspect that Oir-

cuit theory techniques should have analogs in the field

~ j. theory.
Thet the polo-vgra techniques of luaped- crcuit

Ulteory can inde, 4 be extended to electromap-htte isr-tter-

~2: in was recognized by C. E. 5auz [l' -who foamalized the

.h. siglaety expansioa oethod (SEN) a% appliod to Vvnera'

I scattering pyobloas. In his approach a con~dutting

scatterer ~sdescribe-d in tetrws of 4n Integral e~uation

* A. for 1he inducod surfate current density. Tho inverse of

A?' ~the integral operator Is theo azpan-ded in tervs of its

3



I Paols aid their opera tor-valIued residues. The circuit

equivalent of this approach is the expansion of the
Inverse of the impedance mitrix of an n-port network Into

apartial fraction representetion in terms of the poles

of the network and their matrix-valued residues. Thus in

~ I SEN. field theory is so longer considered to be sooething
apart from circuit and transmission line theories,, but

rather as exteAsions of these concepts. quantities Which
must be known for the expansion of the scattet*ing operator

(VA., the inverse of the integral operator relating

induced currents to scattered fields) in terms of its

*...... singularities are the natural frequencies,, modes, andJ

coupling cccfficients.

~ Thenatual fequecies are the frequencies. at which
radiatiwno from a scatterer or antenna can take place with-

out Jar. appllied excitation. In othier words,, the nwatural

Mrfir..~uencies are the poles o{ the structure. Ue see ifsedi-
atoly that the polets gust be either in the left half o'

tOe S plane or on Uts imAginlary ads.1 In order to nxcluoe

*fielids Which grow esxouentiaily with~ time. Poles ow the

$'* imaginary axis, hýmevoe, correspond to undauged sinusoids

'which tnerefore canoot lose en.;q tý radiation..N ence,

poles on the imaginary axis of the s plant osut corre-
spenid to interior cavity resoaaancn vnich do not radiate



exterior fields. The usual Stwusoidal steady-state

resonant frequencies of the structure are approxioitely

the imaginary parts of the complex pole frequencies.

For certain response quantities, it is possible for pole-

zero cancellation to occur. In these cases, the natural
frequencies do not appear explicitly In the response

fuzctionc of the antenna.
C: At each pole frequency there is an associated modal

current distribution. Generally speaking, es a complex

exccitaton frequency approaches a a•tural resonance fre-
S...quency, the current distribution approaches that of thi

A•; modal current distribution associated with the pole. Onie

Is. familiar with this behavior in, say, dipole antenas

where at resonance the current distribution is approxi-

smately a sinusoidal standing vive with the number of nodes

appropriate to the electrical length of the ate•rna. The

.aplitude of the current depends on the difference In the

pole and excitation hrequencies as well as on a coupling

coeffeicent which relates the eucitation to the proportion

of a given "do. which 04 excited.

The otSective of this research iL to Invettigate the

possible use of the singularity expansion method to

synthesi•e radiated time doefin waveforos by !nOformly

loading a loop anteona. In particular, we wish to choose

~¼~' ,t' ''



the loading so as to realize some desired pole-zero con-

figuration on the structure. Since synthesis design is

usually carried out In practice by iterated analyses, we

approach the synthesis problem by first building up an

array of tools for analysis. These include a rather

e;tensive set of tables for the poles and residues of

unloaded loops. The data in these tables peftit one vo

calculate either the time domain or the frequency domain
response of a loop over a large frequoeny rahtge for an

arbtray excitation. A product expansion representation

of the 1rop, Stranisfer admlttance* function is then

derived which permits the rapid calcul.ation of aa,,witude

and phase contours for tkic trmnsyer aelmittanCe. plots

Of tils. contours, in turn, yield intformation on the

Shifting of p4l#0 U;hat *s possible by Iipaedance loading.

Addiog further Insight Into the problem of deteraining

the pole shifts are exkwnsioms of the root locus tech-

niques commonly used in control theory, the extensions

"jraft the technique% to be used In tile present prabies
in which tN0re Or# a countably infinite numbetr Of poles.

714$ :~]With the combined uss of the aibove techniques, soot
progress is made toward the development of an approich to
the synithesis problem. As in circuit theory, the Synth~t.'s

procedune way begin with either of two different starting

6



( ~points. In the first, the synthesis problem is consideredI
solved when the transfer function relating the response

quantity to th~e excitation has specified poles and possibly

specified residues. In the case of the loaded loop, this

function to interpolate the unloaded loop transfer imped-

ance function at the pole frequencies. If the residues

are left unspecified, it is also possible to determine

whether or not the synthesized loading function is pesitiveI

real.[

Tho other starting point sets out to solve a more

difficult but more practical problem. Here one is given

__Pthe tiete domain restnse anid excitation waveforus and

asked to synthesize the loading function required to

Iapproximately achieve the desircd tic* domain response.

In this case, the poles of the resulting structure may

...... ...... not even be needed, depending oin the synthesis algorithm.

It is- emobasir-td that the electrawagnetic syntbosis prot-

Ic. has an additional cooplication which does not h~ave in

NY ~ analog in l*4oped circuit synthesis. This ir. of cou~se.

the tI~c d-clay associated with the getuetry e* the struc-

I: This problem is beyond tho scope of this work and

1i * antitipated that further development, along thesi

.11"es will r*%iUl-e some approximation of 4" infinite
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CHAPTER It

SINGULARITY EXPANSION NETNOD ANALYSIS

OF THE UNLOADED LOOP

There exists a cicntt!.u.! eed to hahdle electro-

magnetic transient problems efficiently and in such a way

that a vwid range of responses to differing Inputs may be
considered or that the desired response say be synthesized.

The purp-;e of this discussion is to shoi, how the slngu-

larity expansion method (SEN) ivy be used to significaitly

simplify the calculation aod synthesis of the response

of a tranituting loop antenna excited by an electromag-

aetic pulse. The frequency dotain response of a loop has

been extengsvely treated in the literature [2], (3], [4],

flu. good suaaras of these treatments, with soae exteo-

slows, ora- givea by King and Harrison (5] and King (6].

I* the folloing, w#e merely sussarize the theory of

'de to the latter for details of the derivations, aed

their notation is generlly followed. We hove appropri-

ately extended the theory of Wu [4] into the codplex fle-
quency or, equivalently, the Laplace transfor d oin.

Although these results uvy &. aidihue *mwevjy by tUe

substitution s - j in Wlus equatinst, we present oelow

\.9



...........

S~the derivation for reference purposes.

lThe usual method of approaching the problem is to

write an integral equation for the current induced in the

loop which Involves the drivltii volt3ge waveform. Because

of f- a etiena! !vm=try of thte !oop. Fourier analysis

of both the excitation and the current permits us to

..... derive a "transfer impedance" relating these Fourier

couponents. The modal transfer Impedance is just the

ratio of the corresponding Fourier components of excite-

tion (voltage) and current. These transfer impedances

............ ¢cotain both the frequency and geometrical dependences

of the loop. I
2,1 Svvnrv of Mu's Theory for an Uniloaded Loop I

•s:cts Extended to Complex Frequencies ol

In the following, the derivation of the nolution for

the current on a conducting loop antenna 1, sunmarizeG

t~ttwtwfollowing closely the presentation of King and Harrison

t+171 r .([5]. As shovn in Figure 1. the center of the loop coin-

cides with the origin c? a cylindricsl coordinate svstee

• deeooted ot ov sod it with the piane of the Ioov lying{ In

• I the plane z 0. The radius 3f the loor b is assund I
...... such lareter than the wire radl,:s a. Furtharsore,. the

value of a is stall cospared with the wvelength, i.e.,

<4(- b Ik. !' 1 (<.1)

1, 10
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The value of 1(#') is obtained from uor integral equation
$ obtained by invoking the boundary conditions. The appro-

priate boundary condition im that the tangeatial electric

field must vanish at the surface of the loop. The valueI of the electric field impressed across a delta gap
. .1 jeerator located at e 0 is Ve(s). If the structure Is
j impedance loaded, the sum of the voltage drops across the

impedance oust aiso be included. For a uniformly loaded
structure this is easily accomplisbcdo since the voltagie

drop per unit lenigth (i.e., the electric field) is merely

proportional to the current at the sar point. Consider-

ing only the unloaded case here, we hove

.. .e s ....(.. .

an the surface of the wire at oo where the scalar an4

vector potentials at the eleawnt dz bdo are given by

444W

1(0 M~ ') WO-11Cos (0 - *) G (2.4)

Canvtinfg tho spieed of tiqkt by c. the kernt) is defintod by



WO dv (2.5)

r and r 0 sitn ½-*)/2 A2  (2.6)

cA m sin (v/2) (2Y)

I. (.4)And (2.5) Oth *0 comPOh~ent Of the surface* e~nSity
C~~rnwt % iIs assumed to be uniform around the wire.

I()1W is ' Zwtal current,

It(o) v* Zn3 ) 28

wfee~beCause Of (21~ the ~41drected4 componenit of

sufc urrt j is Ss-uaod to be nt9lgiigblt. Note ta

r do

&odItrtlcfr ( .t-0 (629Ot
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d'), d tefinf by (25) kty be expand.ec in a Fvwrifr,

W(e *~-'

SC.The 9k~ "ay be evabagtwd fn trers wt tPii%

Using tht results of (LIS5) And rewritinc 21) a

sipexepressiao is otaie fov(:
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K<(O - 0' - .,(s•j e~in(O'*') 1 .

and

iTa GCS) -jb(K"+,s) *nS a.js)
4 r~ 2c ' bb K~) (.8

If we let 0 a- •' nd A 2 &a sin WYI2), the detertina-

tiou of the an depends upon the evaluation of the coeffi-

cients in Equation (2.16). which, with the definition

r/b, way be rewritten in the form

EL' PIs)S3 e3 -eSb/c R:e)dv( d. f- de

As showo by Vu, Equation (2.19) nay b4 aproximetely

wrItten in terms of integrals of Anger-Weber functions

for unrestricted n,, as

- • EL(4(X) dX J3(X) XJ (2.2

V .. ,•J.



KOs a r na to~ac CO ~~ i

-iZ~~~tt~~~t. b ~~~ b. c,' ~ 9~l7~

'sa In. Ina' Inl

4w4

domfined ase .e

161



2 IS Iv)e5 (2.25)

- ~~This its afourier series with the coefficlents(V 0 Z

An($) IsW. The coefftcieuts are obtained by using the
pr~opties of the delta function,

2, 2v

F (ZI26)

(2.27)

Ukore the Coefficent eJ/&towafm$s)] of4d a be

Idestifid as the Otatnsfr ada-ittauce of the alth Fourier
c"oa ont Of Currtat. IW the fo1otgn eptdl

4;4refer to th~is quAntity. as the Otm atrssfer f~uectiou0w Qr
tnassfr -adeftttapc. Its rtflprcctl Us Wcald t&*

. traussfor Ivzttasce.4

A .



4 2.2 Expansion of the TvAnsfer Admittance in Terms

t$ of Its Singularities
I To calculate the current, or equivalently, the trans-

f fer impedance of a loop antenna, we have had to solve the
corresponding field problem--that is, we have solved

i Maxwellvs equations subject to the boundary conditions at

the Surface of the anteina. Having thus obtained the

transfer admittance for flw loop antenna, we next study

-its properties to determine the corresponding btstc

Aproperties of the loop antenna. However, some of the most

important general piroperties of the wanena transfer
admittantce way be obtained from wuct1 more basic considera

?tt( *..tions. These properties are conmo to all dynamical

~;~m .'SYStCUew5-iIoh*#tiul and acoustical as well as electrical

iS"te~s, add they are independent of the particular fore

-of the equations as long as these equations are linetar.

Sgch properties were considered by Brwne f 7] with
.04 '1.special refferece to elactric networks, but these results

are easily extended to all linear dynamiical systems

lecluding systems with an Infinite nutber of degrees of

-~.r..............f-reedom.

/ '2The natural oscillation constants of any passive

physical system, that Is, a system without concealed

Sources of power, must lie either in the left half of

t4.5',.is
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lath complex s p0eas or to the isagimary Axis; 'otherwi see
the weAl -part of thek ceoles freqsemdles of oscilllatlc

£1'] euIftade without ANY coutrmbunUM Of poa.r bY the Systell.

An ocantsn Is lrce space loses poner by ra-dlatloa,

whother Its tendual4s are short circuited or left floating;

4 hence, the poles of its transfer ahwittamce ere in the

left half of the s plant. The only exception Is the point

at the origin. This point corresponds to a static field.
Recogsizisg that the solutions of altetromagnetlc

prebless ire aaslytlc fwct;0oss of the conOlex freqUency

S except at thsese Paol sIngulairItIes, (cosplem naituiral

fn~quoscies. of-oscillation) is the bests of the Singularity

........ U zasnwnhd(E)itroducedd by Sa" 1138 gy
exsadlsgthetransfer edeIttanc is a parttil fraction

seriesoe s0 eeds 1401y th ole en0S*d their re-sidues to

coapktely dete~reiwe the tranisfsv functioo *4tker is the

............. tint or the frewmwcy don Ma.

.ta -n of th&e 4wanitAgs# Of the singularity e0 -ion

'r method a's cospared tU other sofe 'coeveticeal nathods Is

tiat -it pftntdes , vseos: 0- charectarflzlsg the electro.
£4tetlc wl~p~wtiea of6 body with a disceesto

coaplex auauwn together with ak tot of modal ctwrmat
-- 5'. .d tstributtvas. these quattities are -umiquely determined

19



by the btcdy Itself and do act depend, for examples an the

drivinqg souece. Once these quaentities are km~nin a wide

variety of antenna problems can be solved without having

to re-solve the boundary value problem. The singulairity

expansion method is therefore useful for two reasons:

I (1) it provides jiaysical Insight into the Problenl And

. 1 (2) It reduces an electrosagnetics problem to the minimum

number of quantities necessary to completely represent

It.

The antlytic property of 1/# (s) with respect to s

2 allows the use of various theorems of complex variables
in obtaining inforration about its properties. The 4iasic

idainvo~lved in thtis technique is to expand the transfor

1*' ~ function of V/'s(s) in teros of Its sin~gularities in the
Complex frequency plane*. Such singularities can take

vai'ious forms such as poles, branch paiepts (and associated

briinch cuts). essential singularitie*, and Singulairities

at infinity. For a restricted class of objects, which

custhe loop arntenoa, thes6 s-plane singularities are

hlmted to poles avid possible singularities at infinity.

011Ce one hAS foufid the COMP14A natural frequenie

of oscillation and their corriespandiag current distribu.

tioess, it th-on rtmaivis only to determine to what extont

.. ecisc modal curraot is excited by a givers Foutder component

20



of the imput waveform. For the loop antenna the sxcita-

t*on of each modal current is proportional to the product

of the residue of the transfer admittance and the Laplace

transform of the corresponding Fourier component of the

excitation. To determine the natural frequencies of the

loop, It is necessary to find the poles sni of the trans-

fer admittance factor l/an(s).

To do thus, one observes IN (2.18) and (2.20) that

an(s) is analytic for all s for n u O. and for all s

except s *0 when n #0. This implies that I/an(S) is

analytic for all s except possibly for poles at the zeros

of in(S). Therefore, since an(s) vanishes at these zeros,

"sa Sal i,,(si) nay be nonzero with Vasj 09Q i.e.,
no excitation is required at the natural frequencies in j

order to have a current. Thus, at the pole frequencies,

we have source free solutions of the Integral ecuatiot. '1

Ur-Ashantar ES] has shown that

a (S (228

i. the transfer admittance can be written entirely as

*a residua series igsyolviss i-ts Poles so, &and residues Ow
This Is the osire*d expansion of the transfer admttance

i% tns of its Siagularities.

V'.



By our definition of the Oole frequencies* We have

a~d the corresponding residues %iare given by

ii.i
- ~ .(~ 2 1. 1 a~1'(2.30)a (S) Ldsi

From (2 3O) the r4can be written as

where

(ni) i

th
Using (2.28) in (2.27), we owy write the n Fourier

CoU900ent of the current as
., .. .....

Ia~s .. Lw e (2.33)
S- Sn

The equivalent expressiont in the time domain is

~-Ct
I 2.4

na



Where*

and 9Iiand Sol must al'Pear in complex conjugate pairs to

order for' the tie@ domain responce to be real. the star

in (0.34) denotes convolution.

Expression (2.34) Implies tOat poles must be in the

left half plane to avoid an exconentially Increasing

current as a function of tie*. This Is explained phys-

ically by the fact that source free currtnts must Qvea-

tually radiate away all their energy; hence

t~() j~On P 0 f t(t) T.L-rcoinstant (2.36)

Making is* of (2.23) avid 2.27),

not VU~) a

Expamdiiwg afi~s) in its partial fraction representation, ve

have finally

23
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I IM

I s S f

t-. IAl II (2.38)
j Cosa 0 t

Equation (2.38) is for the case of an antenna excited at

4*0 by a delta gap. In the more general case,, the

excitation can be represented by aso 3rbitrary incident

Itfield Eifc(,,s). Fourier expansion of Oinc(.S) alow

4iI.the derivation to proceed as for the case of an antenna

....... and the result is .

I(,s e VlcOs a0 Cbd

(2.39)

the terms 0 are called by Bucm Ell the modal curre~o

di stributi ons,, and the terms eare the coupling

vectors. The quantity

.c.un...eesi' do (2.40)

K~uil~i'is called the coupling cosfficlent and indicates how much
'K **of each *ode the incident field excites. The '.i are the

(2

-V..
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poles or complex nature! resonant frequencies.
tf V*) is equal to unit for frequencies s •j

in (2.37), then I(4,ju) is the ..current response due to a

unit voltage source in the real frequency do6ain. Hence

I(Ogj) is the input admittance and l/I(O4jv) Is the input

impdance of the antenna. hence, if a particular pole

is close to the ieslinary axis, the impedance at real

frequencies in the vicinity of this zero is small, and

we have the phenomenon known as resonance. If several

poles are near the imaginary axis, the tupedance wtil

fluctuate between inall and large values as the freiuency

passes these points Us .h• poles recede from the inagi-

nary axiso the fluctuations becune Ios pronounced, and

the Oresonance curves" become flatter.

An.-liovalent circuit can be dvvelejped representing

Z.th field etutiotis of Kuivell for an electroagnetic

field contatinia conductors and bound charges. Both

transient and simusoidal field phenomena aay thus be

studied by nuerical and analytical Circuit Wethods;

such a circuit arW-do avplies, of 'ourse, to radiation

j fro* a loop antsnna (91. 'The circuit models can in

-I principle be developed for all :urvilinear-orthe;0nal

reference frames to allow the solution, to any desired

degree of accuracy, of any two or three-d.iensional



_ _ _ __:

problem. The models correspond to the approximation of a

trcnsmission line In one dimension by a cascaded series of

sections containing ordinary lumped circuit elements R. 1,

C, and G's. Since the field equations of Maxwell may thus V
be represented by a stationary network (within any desired4

N degree of accuracy), it may be stated that [9]:

Any theorem, formula,, concept or law that
is valid for stationary networks (such as reci-
procity theorems, Thevenin's theorem, concepts
of dualism, reduction formulas, generalization
postulates,, etc.) can be Lrvnslated into a core-
sroonding theorem, formula. cov'eept, or low
relating to the electromagnetic field.

........... As the number of elements in the circuit increases,

the- cutber of poles. also increases. As i consequence of

the above circuit mtodel of Maxwell's equations. contin-

uous structures, including all of free space, are t*wrnts

xv-.,...of networks with an Increasiuigly larger number of

----------- increasingly smaller meshes. The nuaber of their zeros

aisd poles will be infinite. ([n fact, this must bW tru~e
- .:of any physical circuit sintce all physical circuits arV

continuous and cannot be wholly disasisociated from the

surrounding space.)

............ Thus,, there -are an infinite onuber of cmoplex

. . reswuaot frequmncies whose loattions are In the left half

of the comolnx frequency plano, and which occur in complex

-------------- ..conjugate pair as a consequence of the above theorem.

26



tn order to generate a realetimeadomain response,, poles of

the transfer ispA-dance function must appear in ccmpjwý-

conjugate pairs and their residues must be in complex
conjugate pairs for poles not on the negative reel axis.

It is then recognized that the transient response
of an object can be vlewed as a superposition of aseries

of damped sinusoidal oscillations it the so-called natural

frequencies of the object. It has been observed in. many

electromagnetic pulse (EMP) scattering and interaction

problems that the time dtpendence of various quantitiest I
such as the current finduced on an object In an ENPsiuI.
at-or, seems to be tescrlbets by only a fewv of these.j

j exoonectially damped sinusoid-al cstil~aiont'Ifl].

Z.3 kut~.rical Technlqgos .And ResuljtsI
TheexpessortT' a (s) " l to JZ2.Z1)$ Involves

ietegrals of Aoger-Meber functions of complex arqvaonts.I

These functions hakv been cowputed using an axteahion

to cowplo argunw~ts of the methods desribed In CIO).
.A paraeetrlc study of the roots of ¾t(s) as -a function1
of the ratio b/a has bees carried out using a sfuerical

search procedure. The roots, ot course, satisfy the
retquiremet that they should appear onlY in the left half
of the S. plan anld in cooplex conjuga4te pairs.

The so-called Kuller's Wethod has been used to



.I .. . .** . .1

I 0In4 niII
Snueraically detbermin thrwoe rootsaofsat(s)reanethismto

hrefredt ralesferen(scae cI ptdfo he siae

of the root, Sayesatry,, 09 and pratic Usving these

1W'' vitaluesaqdrtic~e Intepole eation formla l Cniserused

I rthde roth ute of thequaratic neresttheJ beto efindathea

varios- deosigae Thi sandthe procedure is rn epeatedusin

found&ogbed Quiter eFor moen detait thes reaer, is~dtob.

refreewhad tochha reernef tmlyo o vrcn.t

Apnc ronxiatte ctpole loclatins Tto intqiai et t ze ros.

of, are)ho n ut eclesary, af thgho iontoracticehaing groodt

initia esticates of poalen loati onr wille c tonsderbl
Ftrtduc the n crofnteuratiots rme~lre4 ato findu tie

~t. I .-. rthervnS dfcltn tolfies of t ntlode Pestrcuv a% wertiai

rein hngo Iiiletraes*`u~il~e
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we in Chapter IU.

The residue for 1/es(s) say be easily calculated by

the residue theorem us•ng a circular contour about the

$ pole as shown in Fisgure 2.

By the residue thesebvi we have

21 a,$S)

a Figure 2, let

ds *jee 4 d,(.2

{ and substituting (2.42) into (2.41), we have

- -- . ... .. .... - .(2.43)
n IZn. JC~an(s) s• *ce

For a numerical app~roximation, we say divide the contour,

C etot v equal subdIvisIons and apply the simple rectan-

gular rule for integration:

f(ir w, Zrr (2.44)

2; nul %()41 , cej

Thus the residuj at the pole nt for a0(S) Is

-9 .



P..P

IIM

... . -... ..

URI . . •

•,a

4{

W,-.' .. ,



Is equation (2.28) an Important feature is that the fuac-

tict, l/6(s) may be represented by Its poles and residues

with no additional entire function requiroed as show* by
Iisshankar (8].

Several checks were mace to determine the rate of

convergence of (2.45). The value of c was varied from

-- ---- O --U) to 10-"' while simultaneously the value of a was

varied frowi 3 to 24. It was found that for the combine.

tion of C 10"Q and *a 3, accurate answers with a

relative *wcar of tbc order of 10'" were obtained.A

.'..d lrge number of these Paoi locatloiis S *sf,~ and cornt-

spondiag residues 1,have been calculated and tabulated I>
for ~da Wii ra60o *he loop nhrame-tef a w~v/

These results permit one to use (2.34) to calculate tind

.. L Owin loop curreats for wrbitralty txcitatio* without

"rsorting to the coaparatively juzefficiont proceis of

'Fourior treasfors~ti on.

By direct calculation wme find In the co*,7ln fre-2

qiWoy pl~c*t a" infinite nuober of complex resonant

AW lrequencies whose locations s':;gwst three separate Cate-

...... ..go .Srios of resoitant frequency ot' pole typcz for each wodet

'4 1A 4....
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thou's is a single pole very sear the s * saxis at

- aproi~aelys G. This pole gives the principal cone

".4tributiom to the time dmomi responae of the loop at late4

t~t" &and tht Imaginary part of tho, pole location Corre

spends closely to the resonant frequency of the loop for

an excitation of the form A

*. Then are n#l of these poles (including conjugate

pairs) which lie roughly on the left-ehad side of an

atlianez eoastani at s 0 &and wit t. skinda.. axis $one

~4tw-.Wha t larger tat* a.

!T~arIst ja layter of pllying alotparallel t

6 S * 416 id. The layer coAteats an In-finite numer
-Its and they *ar Wp&UG ap~proximately vs icb

wOSaits oWer is tho loop radius.
As with this cylindrical wire, increasiug the wire

radius kas the effeact of Shifting the TY9e I poles hear 4

the Ju axis anay free the aXI, oreuinewl, oreas-

tuig the dasping coos-tout: of those *od#% in the tivie

daisi [123. Types It ladIll poles located further (

twap from the i-Waginary axisf, however', move away from the

'S9

m$i-i



iwagý'nary axis as the radius approaches zero.

Pole and residue data for the three loop sizes

0 *2t1i2ib/a *10, 15, and 20 are presented in Figures 3
through 8 and Tables 1 through 8 for modes n *0 thr-ugh

40. For a particular mode. Type 11 poles fall on an

elliptically shaped curve with ni 1 poles ('%'cluding

conjugate pairs). There will be one more pole (Type 11

at approximately w n. Displayed in. Figures 4, 6, and 8,

correspond'ng to 0 a10, 15, and 20, respectively, are

the layers of Type III poles parallel to the s u axis.

These poles are shown for each *ode 0 through 20 for

values of wb/c *0 to tib/c *30.

The residuq corresponding to each of the poles

through 8. These are tabulated In threeolumn for the

thrte loop sizes Q 10. 15O an~d 20. The first nuaber In

each coluen represents the real value of the residue, and

the second Is its imaginary value. rh* index Is a vlu

four-digit onuber that identifies a p~articular pole. The

first two digits are the mode number for m~odes 0 through

20. The last two digits !ýan be grouped Into three dillfer-

&at categories corresponding to the three different types

of poles. A double zero (00) io the list two digits of

the index corresp~nds to the single Type I pole very near

* .~ 33
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the ukc axis at Approxiuately s a. Type 11 Poles,.1

which vaY in amber according to the so"da mutr a, ha~ve

ladies.the last two digits of which rampe from 01 to asV

high as v1
SFor nasple, for 0-10 mode 20 (Figure 3),j the

lade: nmuser 2000 represuats the pole at (-1.06. 19.96);

'A 2001 represeuts the pole at 1i.77a 21.82); 2002 the pole

/at (-5.70, 16.90); ami finally, 2011 the pole at (-13.661,

A0.0). For a give. soda, an thureasing nmuter In the last <
two iodek digits moves along the elliptical arc fr.;ý near

t fthe twt/c axis toward the 'negative real axis In a counte.-

clock-wise samner. These first two types of poles have
been plotted In F1gu,"S 3,5, Soand 7. The third category

ct polgs, Type lilt, co-ntajns in infinite number of poles

VIyny as pasrallel to the ikb/c axis. Only the poles

2t......................ch V~ -reC30C? tabulated. Aguin* the first two

dUý'ts of Uuh d ez jo.- represent the soda nuaber;

frnwe', .etiz *-I W9i 41Ivts all begim with 3.
dmntin *of type. These range fro 31

wto a. hir~ 7% ý3'. For exac~ple. for C 10 mode 0

(Figvtr 4), tue in tow 0031~i represents a pole at
(-0.69, 3.76); 003? reprt.ý;ents a pole at (40.93t 7.05);
aod 0039 a pole at ~1l,29.46). Poles In this layer

are numbered sequentially beginning. with the pole havinog

43
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the smallest Imaginary part and proceeding away from the

a axis. These Type III poles are plotted In Figures 4, 6,

and 8.

eb j Usashankar n8] motes that asymptotically for Type III

I poles there are inly two sets of roots, one set for even
I modes and another set for odd modes. The convergence to

these two soets of values for the loveo orders can be
I readily seen In Figures 4. 6. and -..- ere for Increasing

values of s along the wb/c axis all Type tII poles con-

verge, regardless of mode, to one distinct set of values

for even codes and one for odd modes. In Tables 1 through

8 it can be seen that for relatively large values of s

the residues follow the same pattern. For large s all

even r4odes tend to the same residues regardless of node;
similarly for all odd modes.

w i : These tables of pairs of complex numbers representing

the poles and residuas of the admittance transfer function

•,•. ,•..* are uniquely determined by the loop geometry, independent

of excitation. They provide, through the partial fraction

Sexpansion of the admittance transfer functions, a eeans of

f accurately characterizing the electromagnetic properties

of loop antennas for three relatively different shted

anten;;s through mace 20. The representation of the time

domain response in terms of the poles t.o' and residues R

.... S.-..........

"",.'.....,,.. .. •,•W .....

'. t.'..-,;c 1-



Vy Yields time d'jwain results which compare vel.: with the
Fourier transform of frequency dom~ain data. Howevers a

Comparison In the frequency doh.ain of the integral repre-

sentation and the partial fraction raepresentation of the

transfer admittance function at the same frequency indi-

Cates iitat the latter representation does not appear to

converge to the correct result. This is illustrated in

Figure 9 4here the partial fraction and integral repre-

sentation of l/a.0(j0 are compared. One notes the

apparently constant offset 'in the imaginary part, which

should be zero at w 0. Since a constant would repre-

sent an additional entire function added to the partial

fraction expansion, this problem was studied in some
........ . .. .. . .detail.

An obvious possible source of error would be that
the so &ad R. ere not being computed to sufficiiadt

* .accuracy. The early results were computed usino standard

precision arithmetic on the CDC 6600 with I4 significant

digits of accuracy. Tht Anger-Weber function calculatiofi
vas evialvated by ut'ir~ ai alternating series expansion.

To cheLk 4or roundoff errors, the entfre routine was

rtwrittea for double precision which carries Ze. signifi-

cantt digits. The new routine was checked against the

original, but the troublesospmcgie~onary valice at the origin
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reminaied virtually unchanged.

One result of the conversion to double precision was

the extension of the range of the argument for which the

Anger-Weber function could be accurately calculated. This

Permitted poles s and residues Rto be calculated i

the region kib/cI 30.0 in the s plane. Using the result

of [8]. the asymptotic formula was also used to compute
5n1 and Rifor values near c;b/c *30.0. In the regions

w~here the two calculatl-ns zould be compared, some small

differences were noted betwcen the accurate value ofs

and Rjcalculated using th# series expansion method and

that computed using the asymptotic formula. It is cer-

tainly true, then,, that for values of sn, and Rn n the

range of ab/c from 30 up to possibly several hundred,

sma-l1 errors are introduced by the asymptotic foroula.

At s *0, the partial fraction series becomes

ni ni(2.46)

where the series imuit $su to zero to have the correct

value, It Is easily seen that errors ia the poles and

residues wilgive Wea (s) the wrong behavior near s 1

c~tfer~redividing the partial fraction series into

those ter&$ whose poles and residues are cosputed fror,



the series r'epr'esentation of the Anger-Weber functiou and

those computed from the asymptotic forsulat we have

KU -n' < 30

jn

The lost sari*% for the range of s *J.considered in
I Figure 9. can be approxisattly replaced by

SiC I ~lCGOpare4 to Si eroros Inteeteras

would axplain the Coastant offset show" IA Figure 9. Add~.

log further v~ight to this arguwent is th~e fact that

s'uilar ploft of )/a,&s for other values of n In the

sane range of S show the same nearly Constant offset, "he

value of the constant being indeptndent of n. This is jot

surprisirg. however, when cooe rocal. tlh;. t'.i
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-, ~ Iformula predicts the same set of poles and residues for
stj Iall even m and another set for all odd n.

to urder to ;lleviate the convergence difficulty in

the s domain, an Infinite product representation vas us-ed.

The product representation has the advantage that boti

I the poles and zeros of the function are automatically
included in the represemstatioet. A further advantage of ¾

this formulation is that the residues are not rtquir-.A

These expansions for i/a8(s) are derived in Appendix A

.14 and are given by (2.49) and (2.50):

4------- ... .. ...sb...

.-(s) KO~o) tasi eI:S

for R~ 0 0 where the Si ai'e zlngu'aritles of the ii" mode
~d 21. 4d is evaluated at S equalNsazro;

ib K.1o) w ( t(

wken as 0 or where s~ art. the singularities of mO.de zero

a* k Is evaluated alt s equalls zero.
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Another calculatlom of IaN(s) ULIB9 (2.50) appears

in Figure 9. The offset in! the -imaginary part is c03-

* ~i~cpletely eliminctad. By reformualtiag the problem, the

Iconstant offset has dlsappeared, and the agreewent of the

.i~; series and product representatic-z tziad to validate the

accuracy of the calculated sj It is therefore concluded
Ithat the poor convergence of (2.28) in the trequency

domain is d"~ to small deviations in the computed location

¾ of the sai and values of Rr. for wb/c >30.0 in the s

~1 plane.
The product expansion provides a rapid and accurate

jNeeds ol! calculating the valu'es of lV&n(s) in the comsplex

I fraquency plane, whereas the Laplace Inverse of the

partl.; h.st*On eOXwsfiQ iS usefuls aid aLcuirate in the

time domain. Those two representatlons provide the

.... necessary tools to accooplish all required calculations

'A~i-for the loop ante~nn accurately and quickly.

GC*e further questioa reaains concerning the poles

S for the unleaded loop. it has teen poitetd out that
1 the third category of poles, I.e., the ones -parallellng I

Ithe imaginary nis. in4 the s plane$, do not cirres'pond t

P t siilar poles of either dipoles or spheres. Some specu-

I latlon has been made that these poles are due to the thin

.~wire aoproxtusbtioais use'd to derive the transfer functions

A 55
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a(s). One should keep in mind, however, that such struc-

tt!res as dipoles, spheres, and prolate spheroids are

- topologically identical in that one structure can be
continuously deformed into another and that as such, there

- must be a one-to-one correspondence of their poles. This

I corre.,pondence is determined by ncting which poles merge
into those of a sphere, say,, as an object is continuously

I daforueA into a sphere. The loop. however is not topo-

logcalyequivalent to a sphere, however, because a

,~Nf<. . splie without handles can never be deformed into a lNov

.and its poles do not necessarily correspcnd to thvcse of

a sphere. lo test this hypothesis, a tretho4 of ntoraents
solution for the it A 0 rode current induced in a toroidal
antenna of 0 w~as imflte-na&te Ti~ a t

derivation of thlnteqral e.cuatant~on ehe wt

nuatrica! cnsid-e ra tlq irts are cont-ained in tAppe4idx S

Basically, the loop is treated as a lonductine toroid

d ivi dead up into a l-arge nutter of c~jrviliinear patches,

41The. wire ci~rcueierence was e .idoe into 24 seovents with
.... the cuirrent assuared to be upfform in each sec"ztnt, Since

.in Wu's solution the funsction I/a0(s) is$ proportioral to
the total current for a ut f fo rcly ex~cited wire,' in the

*ýaent solution the current density on the wire uas

initegrated to find the total current under the condition

K '4

R" 1



... .. .

cf uniform excitar-on of the entire wire surface. The

total current found this way corresponds to 1/a (S) -nd

thz contour plots of z-e current should yield the true

Poles of the 'oop (within *cneot method approxirations).

It was found that in order to generate the required

values for fillino the atrix, core computer time was

required than expected. Consequently, it was necessary

tt emoloy a minimum number of points in the contour

qeneration schece In order to keep the required computer

•x.1•e .ithin rfasonable limits. The resulting transfer

6@ti U-.wv for node 0, 1 10 is shown in Figure 10. '1 e

will s3.u-' in 'Thapter III that by comparinr phase and

nagnitude ialues near the ipa '?-ary axis for the method
of -nornts an4 the product expansion (Figure 1!), one

finds nearly the same pole structure. The poles s of

Type !! are not only present, but are in approxiately

the sare location as oredicted. However, a set of zeros

in the total current lies interspersed with the poles in

a zxizaj fashion running parallei to the Iraginary axis.

This .et of zeros in the total current ii caused by

t.#rface currents which flow in opposite directions on the

inside and outside of the wire such that the total current

is zero. In adi(tdon to the zeros, there is also a second

layer of pcle-zero pairs which parallels zre first. flNile
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thi layer has such large damping constants that it has

negligible contributiton in the tioe and frequency domain,

its appearance is interesting, nevertheless.

ii; The matrix deterainant. of course. would not have

the zeros, but in order to plot the determinant, the

density of points calcolated would have had to be increased

by 10 to 100 tins. This is because the appearance of

4 ~the zeross of the determinant were found to be exctremely

localized in the s plane.

SNo attempt was mae-e to generalize the uoment sethoO

Iprogram to investigate the Type III poles for m-odes

other than n 0, but it is expected that they, too, do

indeed exist.

....
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CHAPTER III

ANALYSIS OF THE U14'IFORNLY LOADED LOOP AITEHNA

The analysis of an unloaded loop an*-ina has ueen

presented in the previous chapter using the singularity

expansion method. 'A the present chapter, the effects of

uniformly loading a conducting loop are considered. Fror

the point of view of the singularity expansion method,

the loading merely shifts the location of the ocles of

the structure. It is shown that contour plots of the

transfer impedance defined in Chapter 11 may be used to

find the snifted pole positions and to determine what

shifts are possible. Furthermore, it is shown that the

effect of the loadinq can be interpreted as introducino
a feedb•ok loop into a block diagram representation of

the impedance transfer function. This observation per its

one to use the root-locus techniques well-known in the

area of feedback controls te predict certain features of

. . the pole trajectories as the loading is continuously varied.

Finally, representative tire douain calculations for the

step response of a linear antenna are aiven for various

values of purely resistive loadino.
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Nf I

3.1 Derivation of the Admittance Transfer Function for

the Loaded Loop

Consider uniformly loading the loop with an impedance

4L(iS) total impedance around the loop or Z t(s)/ 2vb
Iimpedance per unit length. The boundary condition on the

loop Is that the tangential electric field equal the

I product of the total current and the impedance per unit

Ilength. Thus the integral equation (2.2) is replaced by

~' ~Expanding t, A and It() as in section 2.1, we have

a~ e y: (3.2)
~~2 2¶b n

~.. which can be written as

.. ,, 
e4~-t.! -~.~ e a 13.3)

a form which parallels (2,')S). Hence corresponding to

(2.27). we now have



P111
Ve(5 )

I (s) *0 (3.4)

~i /

".0 so that the admittance transfer function tor the loaded

loop is

nwa (S) -Z()/b

This transfer functioni his poles at frequencies s s

such that

a~(;)*~Lsl)¶v (3.6)

or equivalently,

(3.7)

Arg[an(sn,i)] a r[L(S;i) (,8

where the prime distinguishes quantities defined for the

loaded loop from tho-se definead for the unloaded loop.

The argiument given by LUsashankar Cal for the expansion

of the adeittance transfer function applies here also

afid results in the partial fraction eupanston



S - (3.9)
a,(s - iL(S)/lb s-

IThe residues Rin (3.9) above are easily found to be

I a;(s;l) - ZL(sni)Iwbn

#4 I where

S A"
flN/ ds (3.11

0)s~~ 4  Zo(S) i (.

A The foet of tthe parti~l fractioti axpansion Vi (3.90) above

is Identical to (2.28) but dth primed quantities replacing

un ri ed- quantiLiesý. fRenceý the dscIssioR of the tiwi and

frequency doomin -urreint rw*sj,~onse 'm Chapter tl applies to

I the hoackid loop as wcell.

. 3.2? bse --f Cuittur Plots to Represent Poles of thej

1.caded Loop

E~uatlons (37) and (2.8) fndhý.ate that contoqir plotsj

Vo'!,he aiqnlitude and phase of A~ (s) in tý., cofoleE frequency

313nre would. sleu~tancously Le plots el the mnagnitude ant

-S63



P aso (shifted by 900) of the normalized imnpedance loading

< jrequired at each point in the coulex fruenc.y toM in

order to have a pole there. Using the product expansson

formulas (2.49)1 and (2.50)o and including all poles in the

rang*

jImI(s. 1b/c)j < 20 (3.13)

mnagnitude and phase contours of the ay (s) are plotted fin

Figures3 11 through 21.. These figures are for modes a 0

throu2gh a 20 for a~ 10.0.

Tat suguitude lines a constaoit in the figures deter-

mine the contours of coustant magnitude of i and the

nervulized lv~odaace loading acco~rding to

M i a(s )It 8in (3.14)

Tk p~s ade s a is related

degres is ý-Iven for ,)an

*~ ~ W .rj&() rgfa.(s)'j -(

* ~A nu~abor of tobse'vatioos concewtving the contour plots

Ar ppropriate.. One Aotoso for instance, that only a (S)

has a pole at s *0; for all other ay (s), S 0 is -he only
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zero of the transfer impedance. Furthermore, one notes

that at each point on the contour plot, we simply read off

~# the magnitude and phase the lrvedance should have in order

to have a pole at that point. This fact is very important

ant is exp0o0ted in the next chapter in synthqsizing the

~#~' "loop response by choosinS the pole locations. When the

loading function Y~s) is given (i.e., in the analysis

¾ 4roblem). sore additicnal effort is required to graphically

find the pole locations. What is needed is a separate

contuu! plot of Z (s) using the samw complex frequency,

n agnituce and phase scales. Then by overlaying the two

plots, -oci of common magnitudes and phases can be drawn.

Their intersection will be the pole positions for the given

loading function Z (s). lote that this woulId have to be

done for every r.-ode, . b ,~ .... ecause the loae-

Inc affects all poles..

P4!e notes that it is oossiole to shift poles into the

r.~ half plane, but this could only be 4one with active

leading. Rewever, generally speaking, Figures 11 throuqh
21 indicate that the heavier the loadint (that is, tne

larger tme ragnft%ýde ef 2 fs~l the larger the daraina

corstant becoves far Vie shifted role. ýn s$,Ou'd recall,

licwever, ttat "n Fi aure I 1i4 Chapter o#, i t~ as ccm-'fte,ýs'~ rret ehcswinr tru;-- su;.ý-r
U7



one finds iii actuality a layer of zeros Just beyond the

first l ayer of poi'es for' mode n a0 anid that heavy load-

ing shift the poles tow~ard these zeros eather than towaad

infinity. A similar situation will, probably exist for4 higher order modes.

Finally, it is noted that the lines where the Phase

is zero on each plot correspond to purely resistive load-

ing and that if the resistance is frequency 'independent,

I then the poles will all be on the same macnitude contour.

IFurther, note that the Type pole (at s * )and the

Type 11 pole ion the negative real axis) for node n *0

I approach each other with increased resistive loading,

I forn a double pole on the neoatlve real axis for a certain

"._ critical resistance, and then solit into a coselex con-

fjugate pair with increased loading. The dorinant 'type I

pole for node n ap*3proaches the negative real ax.

with increased resistive loading, forms a dou.ble poia

there with its conju-date pair, and then the two poles

split apart and rove away from each other alone the neca-

tive real axis. These are tne only two cases 'or which

doicinant (Type 1) poles corbine with other poles to forw

a double pole. At either of tnese loading ccnW tcns,

one %iy call the antenna -itcally darped.J The trafec-

f/I ories of #4e dorinant poles for redes n to n

~ith resistive loading only are S~own in Fiture Z
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g~: .~><3.3 Feedback Interpretation of Impedance Loading and

Root Locus Methods

The relation betveen the excitation and the Fourier

SW:cocpomenits of current 1i,- the unloaded loop,

,w a,(S)
The crrespndin

...... ay be represented in block diacram form as in Figure 23.

Th orsodn relation for the loaded loop is

vais)
Is (s, t0,()-0(.17)

5Z1(s)/*bn

LL~

ts& .. . .. .. .which can be represented in the block diacran o9 Figure 24.

One sees tnat the effect of the loading is to add aFed

back loop into the unloaded loop transfer fNoctioA which

shifts the poles of the oriplnal unloaded syster. This

..... interpretation of leading as addi'gc a feedbrack ;atn oerwits

Gne to use the technilques of c-Ontrol systef. theory

to analyze, for exavole. tie effect of 'eeeback or, tne ;cle
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$ ~ locations and their movement as the feedback (loading)

cwi~anes. IJa discuss in the following the use of the root

loc;,s ct~xaique of control theory (14] as applied to thea

zo~ loop,

a ~in order to apply the root locus techniques, it is

co le-ert to think of attaining a certain given uniform

.. 1odi~ L(S) by loading the loop with a uniform ir-pedance

s)where the real constant ii is varied frox K 0a

(ccrresponding to an unloaded loop) to Ij I (corresponding

... to leaded with the desired 1oadina). To consider i n fin.i e

loadinag, we merely let K tend to infinity. Thus the loco

traicsfer function for a giveuo loading EKZL~)

I L(S) is

*e (s

The poles of the systeIu are now those freque*~cies s s

suchI that

bra (s. U~a ZO()ib3

Shausi and Kelly (14] have Sener~lized the root locus

eq~atins of to e~

F+ 6-



.' ...

U ~for distributed parameter systems where F110) and/or F2(s)

can be written in an infinite product expansion. If one of

the factors F3(s) or F2(s) cannot be written as an infinite

product, then it rust be a rational function. tEquation

U (3.20) is of the form (3.21) andi since a~ (s) is expandable
in an infinite p-roduct expansion, we only require

tht ~s) be a rational function (i.e., Us s Lre
circuit") or have an infinite produ~ct expansion 2s,(s in

-3 aoistributed parareter system). ,the root locus rules

... >given b-y Ghausi and Xe11y as fnodified to aonly to the

present problemt of a loaded leop are QOver beloo [151.

STA-1 AN.D TrR.N'1iAT`P

-he loci st-art'; (L V at tfle zeros of a ( s) and

terninate OsK th ~ e Zeros of . is'~ as varies fror-

zero to M 1 ttY.

Since a~c is a trarceniderta1 tcin tner? are, ar.

S. WifUite nurter of, loci.

g~g ov i are s yrnvtrical atout the real axis.

Te 'cc! i-icl-,e thzse so t~ts o" te rea ixas

*; c vto e 'eft of r- oc týýrter "zer-ýsJi a'

S'j:s: 00r K posit,,,e a".A t- :'ýe 'eloc: t
L ~~e



the zeros of the two functions for K negative.

wahen a portion of the real axis between two successive

/,zeros of an(s) or two successive zeros of Z is part of

the root locus, there will be a particular value of K for

which there will exist a second-order root on the real

axis. This root is known as the breakaway point.

644"%AV CN
The points at which the loci break away fror the real

.~ ax is are found is solutionis of the equation

a ts VI,(s) "sl

ANGLES OF AsRt& AlibJ'EA

If is a s irplIe Zern. of anýs) the angle af diepar-

ture of tne locus fror, s is;iver~ tv

.7. ~S. is a. stý;ie :erc of¾ tl.e ange of arr~va! of

.#. he 'OCc; at S is ;tver.o

ts .a



* INTERSECTIOIS 141TH I.NA6I9ARY AXIS

L For K > O, the intersections of the loci with the

imaginary axis occur it those values for which

.. <~.arg 1/ 2Zn- n 0, 1, 2, .(3.25)

Iand for K < 0, the correspondiq values of are found

fror

-2n ntc

a.a

As k be,.ores iniie tne Icci -ray becorsýe very

..... coupIi ca teo; -3 ordler to stu-dy tne loci, e equate 't

reta! arc 1w~a9inary qptrts o-f {3,Z tC 'mer

rS

> ..... ...

ni n aator 'o 4 te e~ Vese *,siC de 4'$ .

rca cz¶. ~ st*-r -. ' ~ -.



WhrEuto 32)i sdcr hudb xrie

th I~eqain Equaione (3.29 is usdcr e so h ouldbe anexercised

values oftk.

I 3.4 Step Response of a Resistively Loaded Locop

j Figure 25 shows the step rnpoonse loop current coo.-

1Puted by taking the Laplace inverse of (2.33) at : 120

Ifor a resistively loaded looo with 71 V L 600, 1800

And 54Q0 ohms. Floure 2o shows the pulse resoonse at

the same location with Z'~ R, 600 and 1800 ohas for aL L
pujlse width equal to 0.75 ctftb Noncausal oscillations

can be. seen in the tine interval near t *0 before the

first siomal arrives at the observationo Doint. The fre-

quency of the nconcausal oscillations corresponds to the.

Tyoe t :ole of the first Fourier =dt t nct ';d In thy

.current representation, as ex~Dected. The various discos-

tinqnties in the res;)onse come fror. th-e first urn

§ulsP which arrives at the observatiot Point, the cý;rrent

which travels Around thýe lonoerý path fro* the source to the

obsvervWatz ooint, the second trip arouod the l oon , and so

"It ýýoft. Note that for this loot. fl9 3., 1e value of
~2* u5400 cerrnc'onds to a '~Critically damped" loo.

L
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C'HAPTER IV

SYNTHESIS OF THE RESPONSE OF A LOOP ANTENNA.

In the previous chapter, various techniques of analysis

have been developed tnd anýalytic-al forwulations governing
the electromagnetic uenxviur of lopantennashaebn

Cerived. These techniques and resul1ts are, of course,
essentialI in d-etermining the response of a ^Ipanen o

a given excitation and specifiei isrpedance loath4;. In
athe followina, we demonstrate that so- e h results cr

also be u-sri to change the resontant frtouenicles such- *ts-t

fo< r a propetr excitation joy iiz7ut). a deslre4 respoltse

(i~., urrntr radliat~ed field) moight be obtained. TUS
--- VA.we obtainb using th'e siwtgularity expansion r@Drtefirtation,

a *edas of extending to an *lectrowa-tnetic protler, a caoa-

bilty-hat is well-doveloped ir. network theory--the ability

to 5Yt1t~&the desired response w-hen the in-out or

excitation Waveform is g-Jiven.

!nthis chapter, ttte analytic properties of the

adwlttance transfer wuscziczr, 4itrussed in the previous

chapter are erployed to 1orwuiate the Synthe s is p robes.t.I

SCO Some #1tba% ri$ar 4 nec *nA novq4,i.- '. T

wenarytlv-dorv~synthe-sis will be Ilus~trated by u~ino

thete ft-ndamenzk.al synttesls techniques on some sirp*o

.38



example probliems.

4.1 Formulation of the Synthesis Problem

V Suppose that one is given the voltage transform at the

.4.~~L 1 a *y(s), and one wishes to find some response quantity

Jsuch as t~lif current at some point on the loov or the field

Iat some point in space. Then for each Fourier corponent
of the current, there will be a transfer functilonT s

rellatring that Fourier component to its contribution to the

/ fresponseý at the observation point. The total observed
response Y(s) is thei, just the ;unl

Y~~s) ~ V 's) L (s)(4)

For exacple, if the current at a 0oint i s desiried, T (s)f whereas for- a field Doint, the transfer functions
- ~(s! can be obtained firo Aopendtx C. Using (3.4) for

the current, we obtain

n lr..ti an(s) -b

If~ 'ittwe A-tv-0t. that the input V ýs' is ando henice fixed

and V4tha ~P'S r.k w

wish to observe, the desired responive way be obtained. onlyI by -ilanptftng the admittance trensfer function r

K 89...



impedance loading. We may do this as in classical network

theory by prescribing both the poles andi the residues of

the admittance transfer function. The relationship between

't, 4,the la4sling function and the poles and residues has already

/ ~been described in the previous chapter. NIamely, ?rom (3.6),

the condition for a pole at s~ s', is

- . . ........ n s i

and frou (3.10) the condition on t~he resirtue requires that

whre Isth esi rev. resi-due of the shifted polie. u

the synthesis proble" is that of recuirint i nterpolation

- conditions on ZL~s) an-d its derivative at the desire p-le

positions. If tho residute is not of partlcuhar Interest',

... & the the conditiovi on the deriv~tltv can be relaxed.

On# notes that this is not the usual condition.

K~~iK9I requited of the admitta-nee transfer un'cni the cir-
cult tneotj Context. There, the vales and resitlues (or

Zeros) of the desired functicni are thos.e of the response

Ufunction. n the probler cosed$ by (S.4 1.and (4. 4). on

the other hard, the ptles and zeros of the fu.nction to be



synthesized. Z,(s), Oil not be those Of the response

4.2nCionstuto of the 1I~pedance Loading Function

We initially begin with the simp1ifving assump-

tion that the impedance loat~tg funet>,. is ts be synthe-

sized using only linear lumped circu-it eilements and, devices,

Since we art uniforvily ioadin the loop, we Pay, for example,
use "any electrically small luxped circuits it, series with

I ~and uniformyscdarudteOD so as to a~proxinate

continuous unlfore loading. 14ith t~he lunoed circuit
requlresent, Zs) musst tie either a polynovisl in s. orL

I a ratirral funticton; that is, a ratio cf two oolynomlals

Ins. since a poynoeivl is sirp-ver, we corsieer it first.

Surppse we have N ple, we w15½ to. svnthesize so tha
tAC jthe cO!"ditlot on Z IS) is of fle form

where we assuire that in Vte sequence of volts s¾. s .,

!-f eny pole is cowolex, its coo.,~ co~ ate coner

pert is includted in the stqueftte. The polynomial of

lwst ord-er th#ffyn intrpla ovtion cordti. 5

is tonstructel Q;sinsg the Lagran-e polynorialv '16I

91



whe re

=f, (S)
- (4.7)

and where

/n

fr (S) 5i s)(.3

Thus Zs will he a polynomial of degree N. -1.

4 Tf, in addition to the peole locations. one specifies

. .. .. .. . . .th11e residues, we have, accoirdirn ti U.41, addi tionalI

c~staltson the derivatives of the loadifig iunrtlcoi:

The Problemn of tnterpooainti both a functon and its

~~ first derivative at a set of ooirmtt is solved t~y the

fHermite or osculating 'Jlyncri3ls

r~or the fun4.13)U
¼cr th fuctosU (s) and V. U) re oolyenorials itr

havriftq Oropert1.s sIitilar tothose of týýe Lacranige itr

pO'atior, fujnctions LM( s) of1 (44 ) -sn"d etef ined by

. . . ....



U' S.L--) s 5,

rnn

L

In thi cast Zi(s) will be of degree 2N -1.

Ifthe degree of the polynortial representing ?,is)

is greater than one, it is not possible to synvthesize

IL s using onbl passive circuit elere nts, Since in many

applications it way not be econote-ica11y or techn~ically

-1feasible to use active devices, we exan~ine so,"e further

. .c onditions On Zi)which restrict it to be a ½oesitive-
real* functo of S.

.&;'.:1The driving-p-oint admittance ar im.oedA-nce untctiorks

of passive netwvorks (that is., networks consistino ottly of

Inoe0ad re~istors, capacitors, 4"d inductors) are oosithve-

real futictions. That it, ojur 4*pedAirce 1od1 fnctIoa.

oust beea positive-.rot function to to physicafly realir-

proerte% f apositive-reel hnvvczlon can, tt derived

fros its definition. The w~ost basic antd sigeifi-

p1Covit ont*S are Sunkm riQe In *Wbe 9for canvenfence.

j ote that (4) in Tabl2- 9 rlestricts the degree of -the

I ýolyncmial that can be used to represent Zj(S) to, mo
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greater than first desree. However, Zs) mnay be a

rational function -3f s,.

wher* p + 4 2 '1N if ZI(s.) is required3 oniy to satzLfy

.. ... (4.3) and p 2 ZN2 if it also satisfits 14.4). IA

~ ~. ether c-As, if 'ts s to be postitive-real. ~ c1

The coefficilvotv a* aa am ~t.*4~Ibootbiss..

1 aybefound by substituting (4.121 'into ý4.31 dnd(4)

&no Slvinq the rntultins Systep 0f linear equatitons foe

A?.1. sr) ccSn -itiiwon Ootsck values th .t i be

w ltero4ted by posltive-reai" functions has boee dtvised

'rht

watIx (the lt't Eft* opcz cvNý a ti

must. be so4aeg.tc~fntta s



for all vectors x. They further show that this condition

is suff|ir|1.q if the Sn are distin-t and in the right half

plane, i.e., Re sn• 0, n - 1, 2, . , N. This would

imply, however, that the loop transfer admittance furction

contains active sources, which is Impossible. Unfcrtunztely,

necessary and sufficient cur ditions for the existence of a

positive real interpolating function, both with and without

the derivative condition, do not appear to be available at

this time. Th-t development of a criterion for the loaJirg

function to exist and to be positive real is-a challenging

problem for further re~earch.

4.3 Time Domain Synthesis Applied to the Design o* a

Pulse Simulator

One application of loaded loop antennas designed to

radiate a specified wavefora is in tne simulation of the

electromagnetic pulse (EMP) generated by a hign-altitude

nuclear detonation. The pulse shape required can be

3pproximated as the difference of two damped exponential

functions, one having a very short tib.e constant which

deter=cnes the rise time of the pulse and arnother havinq

a long time constant which deternines the rate -1decay-

of the pulse. A ty.ical EP wbvefori [ can be expressed

as

E -vE lib- - e-

Best Available Copy



where

a a-2.0 x 10'

8 m -2.6 x 100

The value of Eo is a constant, and for the purpose of

calculations has been set to unity.

First, we vish to specify the generator output Ve
0"

For the pulse generators in common use, it has been found

that generator output can be accurately represented by a

step function with a finite rise time. The generator

rise time and that of the waveform to be synthesized are

chosen to have the same rise time so that in the Laplace

diona t n

V-(s) -

0 e
s(s-s)

where e -2.6 x 10.

in the far field there exist only two components of

elect-Ic field, E÷ and E (cf. Figure 27). The area of

vr~irrv fterest for obtaining the desired transient wave-

• " 4, .r tr e axis cO the looo within a cone angle of

ttcuy •3 rcr the uxis. -he renoes of anales S consideree

ae he ee 'ore

~:2i:2~e C~p
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>1 nd0 9 <( 300

On the loop axis only th 1::od rkwntrih tes toth

com~ponents are coupled to only the ni 1 Fourier mode of

current on the loop. That is, we assume that otber modes

of current on the loop do not contribute significantly to

the far fields radilited on and near the axis of the loopI antenna.
We wish to find the electric and nagrnetic fields

Igenerated by a prescribed source function (q-sweratoir) andfthe resuiting induced currencs on the loop.. These vieild

components are easily obttined with the help of the

-T-f w~gnetic vector vote-sitl &~Iwhich is (cf. figurt 21)

AI a (2r'a) e(A bdo-I F4l)
Au

~ecoplett solution for the field compoments is obtaioed

by using vector differential operators with f.) Avi

expansion for~ the vector votertial imt spherical haroonics

is derived in Appendix C for in arbitrary observatior.

p-oint in space. This solution is in no way restricted,



and near as well as far fields can be obtained. However,

for the case being considered. considerable simplifl.zatiOn

is possible vwtO no loss in generality if one considers

obstervation points to be in the far field.

'~ .fl$p
1  

Te electric field components in the for field are

given in (5] for several modes, and specifically for

moden 1

J1.sblc sin e) n

a, JIZ/vbn -Jsb/c sin e

E Jvb I (-Jsb/c sin 9) cos -t (4.20)

~. Whero

Vzbsr/C

For the range of e neor the loop axis at 9 0, (4.19) and

(4.20) reduce to

dE S-.. 4

sri
1.L



ýp' For conveainPn- me will set 0 0. factor out the time

delay a~nc ad drop all other unnecessary constants,

exhibiting only the remaining depenC-,ce of E6 on s:

isV0(S)
E (4.24)
at~s)- jZ(s)/vbrn

Equation (4.24) shows that the rtadiated field is propor-

tional to the time derivative of the current. For code

..... ~ ... 1, tke partial fraction expansion of the adwittance

transfer functionl is

Substitutint (4.25) ioto (4.24), we have

VV

where the Si correspond onl to roe . Thus iti

seen that the effect of sp~ace is to d~ifferentiate the

current sinte the far field transforui is just proportional

to the current transform dultiplied by s.

the functionail re'IatianshlP betweten thic aboCve quaii-

titles is described Woow:



Adoittance SpaceGneto
Output Transfer x Transfer x Fun ctioan

Function run rt i o

Using the results of (4.26) aind (4.16).

E R (4.27)

(ss s-sj

a,1!-LJ~~(S-6) S -Si

O~en the impedance loaditiq futiction is restricted to

be of~ Vta cne- or two-.element kint, considerable sirplifi.

cation results in the sylsto~sis. In the fellowimg, Ittetn-

ti on I s foecused ion uniformly distributed resistive and KC

networks. this choi-ce, is made foe simplicity and1 betause

resistive and RC networks 4re frequently encountered in

high-~frequen~cy circuits. Siice the cooplexities 1,volvod

lin general RLC synthesis are ouch areater, we litit

ourselves to a few basic, simple, and use1%A techniques.

/0
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The radiated fields of the unloaded loop &ant"nna do

not appetar similar to those of an fliP waveform due to the

marked oscillations in time. One way to modify the radi-

ateui fields is to add resistive loading along too structure

/ so atow to reduce the effects which cause the oscillations.

/ 4 If the structure is resistively loaded so that Z

~. Rtithen as the loading is increased the poles in the

first layer (see Figure 12) move generally in the -ob/c

I, ~directlon, indicating that theIr contributions in tive

attenuate more rapidly. The behavior of the unloaded
Type I pole for modea n 1, located where tls/c I close
to the a/lc axis, deserves special attention. As the

/... .... loading isincreased, this pole moves on a curved arc

F~-cd -w o the -ub/c axis, at which point a double pole isI

formed with its conjugate pole. As the loading is

2* further Increased, this double vote split: one pole{
mving to a~ nd the other toward zero along the cb/c

axis. This behavior is completely Analoq-outi to that

ob*twrved at the resistaitte is Thcreased In a series
tesonanot RLC c4-cuit. At the Poirt whore thea 'c-ýcbl pole

first is forced, v- refer to i."e loaded cntenna as being

critically daape4.



In the following, we examine several possible approaches

toward the synthesis of a double exponential waveform (4.15).

The problem might be considered as representative of the

general synthesis problem. In particular, we encounter cer-

tain limitations and considerations which should be common

to any synthesis problem involving the loop antenna.

7 The approach taken here is to force the Type I pole to

be the synthesized pole. Since it will have a long damping

constant and since the loading generally forces the other

poles to have shorter damping constants this pole should

dominate the late time response. With the observation point

aiong the loop axis, we consider only the n I mode aind

observe it in the far field. Finally we restrict our con-

sideration to simple loading functions involving only resistors

and capacitors.

We begin by attempting to specify both the pole and its

reSidue, In (4.15) the values of the residues aro equal, an4

the requirement exists to spec~fy only one remaining pole in

the sun (4.291 which we call s'. Let sj be equal to the

coefficient a in (4.15). i.e. , the pulse decay constaot,

A... .... .... .... 2.0 X 10 .The remaining task then is to equate resi-
dues. from (4.29) this requireiment is met if we lot

(4.30)

104



where the impedance loading function Z1(eWs to be determined.

.~ I Note that for the required zero of the transfer imped-

ante f unction, it is also true that

a1() k(si)I4bin C (4.31)
I(C

Solving equation (4.30) for ZL(9) we Obtain

Z (8 `,won~( zj (4.32)
LI

where R'is the value of the residue of the admittance trans-

fer function. If wt specify a series RC network then

-. . t .. . ...) ..

Pro. the r-esidue con-dition,

. 1 (4.34)

Cs
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Similarly, substituting (4.33) into (4.31) yields

Thusi 4((R4.36)

Thswe have two equations with two unknowns, which can be

solved for R and C.

Solving the system of equations (4.35) and (4.36) gives

- 1437
Jvbn s' W saSj)' a(sO) &M51 4.7

and

k ' *jbna (S)1(4,38)

The solution expressed by (4.37) and (4.30) is theoretically

correct; In prictice it is or' realizable with passive, tie-

sens since the derinmInAtor of C is "egative, Whereas Ck

numerator is positiv- Thus spocifying ýqth the pole And its

~. residue yields a" unfphysical solution.

One sees that the requireoent that the residues be equal

& ~. rises from (4..5) because the response at t *0 should bit

zero. Since the short time constant exponential is provided[ by the sourc6eoad the longer time constant ý'imes fror. the
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antenna *ringing down," and the waveform shape during the

N ,ransitton between the rise and decay is not critical, one

should be able to obtain roughly the desired response with-

out specifying the residue of the oole. Accordingly, three

additional cases were selecteU where the pole location was

specified to yield a decay constant equal to the value of a

soecified in (4.11). The first case used a nurely resistive

I load of 4944n; in the second case, 3'O00 and 66uf capac-

t itance were used; and, in the thihd case, a 10002 resis-

tance and 3 99uf capacitance were used. These combinatlors

were chosen by requiring ZL(s,) • 4944 * iO which puts the

pole at the desired position. The time dogain respoose for

e4ch case is plotted in Figure 28. In the figure, the shaoe

in each case is alqost ldentacal. as expected. However,

the decay tine is much shorter than the desired value. To

see thit this effect Is lndeoendent of both the generator

excitation pulse shapr aq t1,le ladinct, the steo function

response was compoute& ind It show'n " luri e Z. Thi SOiO-

larity of the eesoonsq in each case t#ads one to the can-

clusion that it Is a zero of the looo transfee adpittance

at s - 0 which ciuses the difficulty. Recall that t4ýe

unloaded loJn transfer iweedance ýunctfon has a pole st

s 0 which translates to a zero I" the looo admittance for

both the loaded and the unloaded cese. Tris trans!%issiro

zero tends to cancel the synthesized pole at S w

"I10
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which i~Is coe tc the origin resulting in a very decreased

This :ero arises, of course, froMt the combined ef.

fect tf the remaining poles of the loop which have been

*jnconstrtined. Hence, their effect in the late tive re-

sponse is hot negligible as yes c'riqinally asvused.

Sic ,a (s) has a pole 4t s then for low fre-

vaencies the lo!)p ti ansfer ~**ýdance is capacitive. Sink.e

the unloaded loop is cassiv., this equivalent circuit e½E-

bent must be cositte nf oar for loadino to be ch-ssrn

21so aSk to Cinte. the pole of a,1(S) (i.e., the zero O9 t~te

.. OFt hav to.IIi

the low reweruncy Ohghevof 0 a ) W, ld eould reou irt 1

ft~n~hyice :vgl'~t tpacias'e. eticc.. it is rot

-t.. psstble to C..nc& tht ze~ro in tno ado-Itt-3vtce w'anS fer

To tiest the VAflidity of this vxrrlanIt'o for t'~e

T*o icte ti9e behavior. a mank;erk etl~ ¶~n wafs

K.....~tc- o deters-fins if it wAS Oossib'e to eOimi;;nl

04 the? ieIn the admi-iteance train fer, funictietis'..rd

in;l'y the gentritor outp-jt W4VeO~rI wat MO-41fid to t~t

Ojtme i-ittgrtl of thNe o-ig~inal excitat~ort. whilch Jintr.

.~ doced #motnet 9ector of I!s in ',h# treasforn uri so

41 to cancel the zero in the transfer ooimlttanýZe '4t s



This, of course, introduces a ramp in the time domain

output of the generator but fulfills our rcouirement

for an additional pole in the denominator of (4.27).

The resulting time domain response is plotted in Figure 30.

The similarity of the late time response to the desired

double exponential confirmed the conclusion that the zero

in the admittance transfer function caused the previous

difficulty in achieving good late time response. The

integration, however, further dearades the early time

response.

Since good early time response was obtained with a

generator frequency dependence given by

Ve(s) - V
o s(s-2) (4.39)

while good late time domain behavior was obtained with

the ' eeuercy dependence

e(S) s
os(s-3) f4.40)

one •mglt sveculate that perhaps a good overall aqoroxi-

na•on tc the desired resoonse night be obtained by the

aj-r4
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xi , F.'

o s2(s-S) (4.41)

which has the desired high frequency (early time) behavior

of (4.39) and the desired low frequency (late time) be-

havior of (4.40). That this is indeed the case is seen

by noting that the respons) of (=.41) is obtained by super-

positioa of the responses due to (4.39) (Figure 28) and

(4.40) (Figure 30). However, this approach (i.e., modify-

ing the generator wavefors to produce the desired resoonse)

runs counter to the object1ve of synthesizing the desired

response by loading the looi;. It appears, then, that

althouvgf we may be able to synthesize the pole pattern of

the l1op for a finite number of the poles, we onay require

a more elaborate treatment to guarantee that the porition-

Kig of a finite number of the poles by Impedance loading

does indeed lead to the desired tiae domain waveform.
The complexities introduced by the infinite number

of pole, an4 the apparent late tl•e differentiation of

thte decayIng waveform due to a zero in the admittance trsns-

fer function pose a unlque and difficult set of constraints.

This is a problem outside the scope of this study but

offers interesting possIbilities for future research.
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ft f CHAPTER V
CONCLUSIONSI The objective of this research has been to develop some

fuudae"OtAl techniques for the analysis &ad synthesis of the

responsE1 Of a load*" ioop antenna. In the past, the time do-

ii min rnspon:!,a for such a problem would be determined either
by ;meharmonic analysis coupled with Fourier inversion.

ort by direct time dwaain solution. With the addition of I*-

pedance loadiwg, considerable effort would then be spent r-

calculating the entire response of the loop antenna wlt%out
.1 . ating use of any of the information about the response of

the unloaded antenna. Use of the singularity expansion wetted

(SEN), however. permits one to systematically examine the

effects of loading using the solution for the unloaded loop

The ttstervation that, the solution~s of electrouaonetic

problems are analytic functions of the COb: 1CK frequency s

except aot singularities forts the basis of the SEN and p'wt-

sits one to use the many powetrful theorems of compltx varlI-

bin% to woire efficient',., represenmt the solution. The result-

ieq time domai, response representation is a superposition
of damped exponentials whose complex trecuencies correspond

to s-plane poles of the admittance transfer function. These
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.-- - eitorione ;,row te *mpedaimtt lO.14bew a*J th14

loaded admittance transfer f uncto Thus, the advantage

'A/ of the singularity expansion technique is that one can sepa-

rate and characterize basic attributes of t%e structure only

once, amid the time domain re~sponse for various loadings and

excitat4ons can then be easily determined from the structure's

.t characteristic behavior.

In Chapter III it is shown that s-plane contour plots

of the magnitude and phase of the unloaded impedance transfer

.4 / function of the loop permit one to readily determine the tra-
Jectorles of the poles as loading is added to the structure.

/Furthermore, the observation that the loading i;.n be inter-

preted as adding a feedback path to the admittance transfer

funuction permits one to use the root locus techniques of

I ~control systems to further aid in the determination of the

Ipole movements with increased loading. Since we art dealing

with an antenna that Is a distributed parameter system, the

conventionial toot locus technique was qeneralized so as toJ be applicable to a system with a countatly infinite number

of singularities. The generalized root-locus technique pro-

vides a valuable tool for Studying the effect of varying the

impedanoe loading over a wide range.

Theg syntteisis Of time domain waveforms by impedance

loading has been considered in Chapter IV. It was found that

.....



the required condition an the impedanc, loading to locate

A a pole at any point in the complex s-plane is that it inter-

polate the impedance transfer fujiction at the desired pole

f requency. If the residue at the ocle is also to be spec-

fled, the derivative of the impedance function also satisfies

an interpolatory constraint. These conditions may be satis-

fled by Lagrange or Harmilte int~rpelatlng polynomials, res-
pectively. However, if one is restricted to passive loading,

the loading functia,. must be a ratiooal function of s. A.

netessary condition on the interpolation constraints is g'iven

for the realization of passive loading. A sufficioncy con-

dition for realization with passive elements is apparently

. . . . .. .. .lacking at this time however. Sowe sire't attempts in Chap-

ter IV to synthesize a radiated waveform consisting of the

su of two exponential funictions were only partially succts-

ful. The difficulties seemed to arisc frows attewc'ting to

contrul an infinite nueber of poles by loading and fro* the

presence of zeros In thQ output response due to the admittance

trasusky function and the free space transfer function.

In sunmiry, this resi~arch was directed towards simpli-

fying the understanding of ispedance loaded loco antennas

using the singularity expansion solution technique. On the

Sbasis ofthe results of this study, several recodmmendationls

concerning futuri research are suggested. Furthe.: study



is needed to determine what constraints exist on the

realiZability of POS~ive loads. Also needed is an approx-

imate theory for treating the infinite number of poles
of Type 111. Possibly a transmission line model would

enable one to factor these poles ou~t of the admittance
~ trans'-er function enabling one to work w'th a few ooles in

partial fraction form, the rest being absorbed into a
Itranscendental functionl representing the transmission line

4 pproxlmaiotli. Hopefully, such in aporoach might lead to
a better understanding of th~e constraints on the realizabll.
ity of time domain waveforms imposed by the structure.

Another approach to synthesis might involve optimization

techniques to choose the loading so as to minimize the error
j between the desired response and that actually obtained from

M the antenna. Here the shifted poles would aot be specified
I ~but would enter the calculations only as a means to t.iapute

the time domain response. Fintally, an interesting arta
for future research is in developing efficient ways to han-
die non-uniform and point loading. In the case of the loop,

.~- such loading unfortunately couples all the modes together.
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I APPENDIX A
DERIVATION OF THE INFINITE P~RODUCT

REPRESENTATION

Weierstrass' Theorem for infinite products [19] requires

dcrivatives with respect to s. in the following, it is not&-

tionally con~venient to use both the wavenumber k -is/c and

the Lap. re transform variable s simultaneously. Thus. for

example,

....... dan(s) dn dk -Ida" (A-1)
d s dk d s c dk

Except for n 0. sn(S) has a pole at s -0 which we wish to

eliminate. Hence we consider the intermediate function

fns Sa (s), n *1 :1, 29 (A-2)

which ha~s only zeros in the finite complex plane and hence is

an entire function.

we now consider the logarithmic derivative

fn(S' an(s) 4sa;(s)

f~ s) (s) s)(.3)

*which is meroworphic. If this function is bounded on a set
of Contours. Cn toclosiftg the poles, the an infinite productj

lie



.... j... representation exists [:20:1

Recall that

an*r tn.1 Kn~. 1  j- K (A-4)

where the K are defined as

KIn -F (kb)(A5
0 w 1 0

and

na _n (!- ~ (kb)(A6

()z 2i U d (A-7)

adthe fuctonstant(zC is dfnda

F~ (i) w -(A-8)

Cnd the constant. an zIs Ls

UC

~. .The futiction in~ (A-1) F() can also be written in integral

fora as [21]

ft 2W

Next we derive a recursion formula for the derivative of
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F(a). From (A-9). we have

2z
F (z)-f r-Jz sine - (,-1)Ie]

-Jzsn-ne) sjO-n+) ljz (-

e[e~ e de dz (A-11)

2:

f S~ ff -(~ inena)s~vdedz (A-12)

.. ..

3*]J ~f ede} 4z (A-13)

r22 2:

.. ~,.,Integrating the second term yileds finally
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F~ W F (z W -j(z sing-ne)
i'n-I'- n+J e dS?

0

0 .........

~frf~-i(z sine-ne)
F'(z) . .Ie dO (A-17)

which upon couparison with (A-1)yed h eie recus-an

formula,
g A.

n-(, Fn C:)mF ½+

-~ T5

Using the Fundamental Theorem of Calculus with (A.7) we can

alternatively write

* w.F C)-F (z) A6~(1* J~z



We may now return to (A-3) which we write as

f~s (A-2

I Gifferentiating (A-4) with respect to s we have

.(.. ... .k 
bk A 2

where

-bF (kb) F (kb) F (kb%

F kb (A-23)



where (A-1S) has been used in (A-23).

I Using the esyaptotic ewpanslon obtalkied by Umashtakar (B],

lie. [ (S) *K' (S)] -J(Zkb -w

-e -

4 so that finaolly, we have

Fo 'C~j NY ag, &Nes



- -. T -'' " - - - ---

IJ

K~ K 17)



Keeping only the dominant terms I•n (P-30', we have

-JŽ [ - kfb
4" kb-" C -(l) t4

-J(2kb - ri4)

Therefore (A-3) reduces to

lift

'V.

n -5(2kb - 94)r 1/Ik

I!•i Th•,S t•, b l/-bkbxpnso, of j(-(fl • iel y

L'lnkbe

A L

(A- 32~

Ta's function is bounded in botil tn left and rihts an

as s~ and also on a circular contour which Vasse, between

the Wces if fn(sý) which are the zeros% of ant(s).

Ths~s, the product expansion of ff (j qg iven by LZO

f* f (1-/s.} (A- 33~



whereI

II .~- .. .....

f'(O) -~ cn EJ n .1 %/ k2b
At If (0)2

K;+,n Kn n2 KA

2 ( Kni 1)-(A-34)

K w0
. ._ .2 . ..

Htswever, fromi (A.6)ý

41..4 .. .. (A- 3i

: tt 5 Kl' (O g b FO (Q) (A-37)I
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F2,F (o) F2~ (0). 0 (A-38)

Finally, we have that

t~i ~ (na\ R
fa(0L0\1 10

(A-39)

...- v ....

so that combining (A-33) -(A-39). we have

_C

fn s sa (S) 0

- S ssn 0 (A-40)

Thus,* ;he ýnf~tatet p~roduct represetntatioo for aWs ii

............. bs ~

In

Turning to the representation Of A Sw not~e

a (S) ha a zzerc at s 0, to we consider Me~ fuhictioýn
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.s~ .. ___._......_

0 ss (A-42)

The logarithmic derivative is

E 1, 4

0 s(s)s

ao s S (A-49)

Fros (A-4), we ntote that

- o~s (A-)

~ iwhere

*~p~4 ~.Th~~¶[KJ~ ~)lo )4C 1 ] V (kb) (.6

Diffeentitin. (A-4),Aw-hav

6.4

'~b 4 I'

~1C



b FI(kb) F V(kb)
3 ~(A- 49)

The asymptotic formulas fron [8], yield

- ~-jj--eJ(2kb11/4)

81 0(s) kb In - i kh1b)kr _

kb -J(2kb-.1/4) (-l

In (kb)

and for the derivative

a'0 ~ b [\ ' vkb
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b ~ Ink -i(2kb-w/4)

+ e -I
2 44k

(A-53)

On keepintg Only only the dominant terms, we have

itE ais) -(2kb-w/4)3

(A-54.)
4.

Thereforie

I. nk rk

I I -in kb

130 (A-55)
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This function is bounded on a circle of radius R attached at

theorigin and passing between poles in the asymptotic layer.

V'(S)
Hence .. ~-.is bounded on a sequence of such circles R en-

f.(s)

closing p poles. We now need the value of

S0 a0(s)(A5)

Fro. (A-55), we have

f;(O) ~ ~ (bK1  kb K -1)2
-3 O (A-57)fo(O)I c

-i K(O)

out

KI * I KO bI (A-59)O'I C

and

! 31
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Ki (0 -bF 0 F 3 (0)] 0 (A-60)

YSO

* ~(A-61)

and we have finially,

f (s) f (0)[ 1 ~~~eS/o A~0 ~0

where the produce is over all the zeros of a~(!) except s-0.

Since

80O 1. a(s) ln k~
o() kb.O Jkc kb0 (A-63)

b

... ~...< .we Slave finally.
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soC

-- (A-66)

In summary, the infinite product representations aro

irT (~S/Snj n 0 0 (A.-67)
ft2K(Or H en

and

0, (01 1

- f where
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APPENDIX B

CALCULATION Of THE NATUQAL FIIEQUENCIES BY TNtE METHOD

OF MOMRENTS FOR THE vi 0 NO0DE

The ftethod Of socients solution for mode 0 requires
only a J componentt of surface current which is 40 Independ-

entt. BY SYSmetry, there exists only a * component of
magnestic vector potential which is also c, independent. The

scattered electric field is given by

fS ~ (k2 *Av*) BI

u0c

Because of the e lndepeneencee, the 4component of' the
scattered electric field is

4

WU

where the magnetic vector potential is given by

a~t, 

eb..R

.~ ~-,and wbere
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, Za~l - sin *sin9 -Cos v~Cos *'Cos*)

+ 2b(10 co COSI)

+ Zeb(1 eo ' o5 sicos o *cos o') (8-~4)

and

a' ub a cost,'

The coordinates @ ,and are define%; in Figure 1.

Since the fields are independent, e!has been set ecual to

zero in (6-3) ind (B-4). The singularity occurring in

(-3) when i'P s and 0 (i.e., R *0) is difficult to

handle In a nuserical solution. Accordingly, we extract

- j the singular part of the integrand analytically in the

.'. ~4..following.

.tt7472Considering the integration on 60 first, ye write

the distance from the source point to the field ooiot as

2. ....
4.

B * a3 -Za2 Sin Sin + 2b2 + 2ab(Cos jý *COS ~

.~~ C 2&Z2 cos cos v *2 2*Zsb(cos tý *cos fC) (B)

9.. .......



v~ F

So that (B-.3) become&

~ 2v
A. 2  f 3(01)(b 4a cOS ) a

0

(Jo (B-C cos)

Consider the integral in the brackets. We isolate the

singularity by adding and subtracting a term having the

same singularity as the integrand but which is Intearablet

[e-jk(B -C cos r~~
SCos d 4)

fo ~ Cos*,11

[ ~ - ~Cos ~~

0 C Cos

The first Integral on the r¶Igt-hand Side is nontiogular



and is hence amenable to auxerical integration. The second

/ Iintegral, which we nwproceec toevaluate,, cont~ins the

Wiguaith th substitution cos 4 * (2cos1 to/Z 1) and

the change of variables 0'*~ 2r, the second integral

becomes

L cos At
(a C Cos0'

O *k C)'1 (

whr 0 .0OCIP-4C and (~ and E(r) or'e elliptic in~eeral's

oftefirst and setor.d kind, respectively (221. T14us,s

wih(8-6) and (S-SQ. (8-7) beeoues

LA a o

I .~A ~ 3(~')( * a co t c)
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/ II
The terni in~volvlng K(m) is still stnrpflar since as

/approaches 2. tends to unity. Us Ing (8-6) tie rewrite

m to exhibit its 'ependenre on 2explicitly-.I

F +G cos V -4 sin v'

where

.- ~ 2 4b +4&b Cos

E' 4a, Cos d abI

F 20*4t 4C, cu~

G 2a1Cos.4iab

.0'-~~ N 7,a sin (-2

4' The singuilar initegral of interest is

J(j(b aV04 ) ~] ~ ) I

0.0A



The order of the singularity may be determined by evalu-

ating the licit of the terms In the 1ntegranj as p

approaches &' or, equivalently, as P approaches 1. Thus

- i~ hae

'K li (S + C) Z(b + a cos t)

and

I~ in tin
0le1

"I O- In 2a8-.23a ÷ scos- ' - 23 s lnlsbiW
F + G cos si- n sin.

'flin(u6 In ½at [I st.9 15-14)

frota (B-I1) and (5-12). Expanding cos ( - .) In a pow•r

tsenes and keepinV only the do-rnant sinqular term from

(9-14), we have

K(m) z -2 In ( t. (-5

H~ence,

13(

)-,



li U -2a -1m . a

8 j W0 + a cos t')L

(9 + C),'

0Z aJ t(v') (2 ln!Qý - pfM) (B-16)
21

We now consider dividing the cross section of the loop into

N subsections of angular extent

.~ 2'(8-17)

and define midpoints and end points of each interval as

s(n-1)A

u(n 3 /2) ZQ

The current is expanded In pulse functions

n~i

whe re,
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p (0)

and substituted into the vector potential. Since by (82)

vecor otetia isproportional to the electric field, at

a nturl rsonntfrequency. the vector potential due to

the current along the surface is zero. If this condition1s enforce aot thei pont 0 (BS-20.a jat

That is,

dot 11(s)l

when s is a natural resonant frequen~cy. The matrix Z(s)

is defined by

. 0 20

n n

"'NN

N'. 141



+ 1/ F
u ~ W48j ) cos 0,c~I do'

~~~ Co 01112 cs

2(B C)

+ 2In -t

wt~~~re ~()* ~ Cos ~'in the above exipression~s. "tote

that the singular tera (5-16) has been ex~tracted fron the

integrand and its integrai1 Is added outside the integral in

(-22Z) for P n

The Fourier expansion of the voltace across a uniforIA

W.. gap is
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0 Q.,

1%'

I V (624

Ut sin (22), out that rthe toal currtinti deqenenc tor the

sue of individual current. That is,

V a (S)ZS
C

Where i /w 1  and the sum is the ouantlty plotted in0

Chapter 11, Figure 10.
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APPENDIX C

DERIVATION OF THE NEAR FIELD EXPRESSIONS

The electromagnetic field of a circular loop antenna

with a current distribution given by (2.37)

a [ 2 (C-1)
T1I a0(s) a a(s)]

may be determined from the vector potential for any

arbitrary point.

The element of vectur potential dA at a Point roe 60

0 or X0 Y, 7v Figure 27, has two components

dA~ -dA sin

............ dA~ dA cos *'(C-2)

Those say be expressed as

~.)Cos ~'bdo' (C-3)

'Ie~ (C-4)

.. . . . . . . . . . . . . ..n --.. ,....: .

1 ..4 ..



whene comparing with (C-i), we have

I I~rn-i v:(s)

Furthermore, noting that

or * Jkh(Z)(tR) (C-E)
a

where h(2) Is the Spherical Kanke' function of order

V. zero, second kind, we ray employ the addition theorem (23]

. ...... .to write

a £kR (Zttl) h(2)(kb) 3.(kr0) P,(cos ),r0 < b0 two

2(2641I) h.(2) kr0) 31(kb) Pt(cos r, r4 b

(C-7)

The Legendre functions can further be expanded as E231

L ccP'(o

PT(COS e)Cos 'V(O-c') (C-8)

.............

)f



where Ca I for m 0 and C. 2 for a > 0. This may

also be written as

P(o )* iLL..Pf01(cos el)e(-9

. .. .. .. .. .Hence, for r0  >V, we have

dA~ a I -n'-k

~~~ n ~cs~ i ~ O,~ ~
4v(rn

.k.....co sin to' suut1o tbo

....... jg C-) nt (C-10).wmarerngthodr

.N". II'C-
.
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P1*1(cos e) Ph'I(cos e)

67

erI-u bda'C-i

Let the inner summatloin be represented by an indexed term

O / C. * t ~ 1 (2+l)[h(Lr,)j J,(kb) ~11

- P101(cos, e) Plm1 (cos e') (.2

so that the vector potential can be written as

dA uv I [ -e'(n101) e-Joa'(n.1l

. .... ... .. . c. . mb (C-13)

~.. Integrating over all oc and using the orthogonality of the

fnct on ixp(t ') we ot~toln finally,

kb.
.......................

74% i't+- *--

S - Ow. "4. N, Am-' n; . . ..%



TI,

Sicilarly, A~ is found to be

~y.

in~[C ("+1a isrpac0b

-C15

rt"IUco e) 01I Co (C-16)

This completes the derivation of the rectangular corn-

ponents of vector potiantlol. It is Pointed out that the
... vector pO1tential equations (C-14) and (C-.15) are valid for

- ~near and far fields. The electric and magnetic field

- . qugatities ray be derived from

X (C-17)

for periodic ti"e dependence where k vc. In the Laplace
7,. ~tratisfor% domuin, we have sfimoly s * kc.
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